skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deaconu, Lucia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 5, 2026
  2. Abstract Atmospheric aerosols influence the Earth’s climate, primarily by affecting cloud formation and scattering visible radiation. However, aerosol-related physical processes in climate simulations are highly uncertain. Constraining these processes could help improve model-based climate predictions. We propose a scalable statistical framework for constraining the parameters of expensive climate models by comparing model outputs with observations. Using the C3.AI Suite, a cloud computing platform, we use a perturbed parameter ensemble of the UKESM1 climate model to efficiently train a surrogate model. A method for estimating a data-driven model discrepancy term is described. The strict bounds method is applied to quantify parametric uncertainty in a principled way. We demonstrate the scalability of this framework with 2 weeks’ worth of simulated aerosol optical depth data over the South Atlantic and Central African region, written from the model every 3 hr and matched in time to twice-daily MODIS satellite observations. When constraining the model using real satellite observations, we establish constraints on combinations of two model parameters using much higher time-resolution outputs from the climate model than previous studies. This result suggests that within the limits imposed by an imperfect climate model, potentially very powerful constraints may be achieved when our framework is scaled to the analysis of more observations and for longer time periods. 
    more » « less